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Overview

The Global Geodetic Observing System (GGOS) goal of SLR normal points 

accurate to 1 mm, in addition to a growing list of client satellites, places 

challenging new demands on the ILRS Network as well as the space segment, 

which must simultaneously provide adequate array cross-section and minimal 

pulse spreading. This presentation summarizes and updates options presented 

by the author in three recent workshops including:

1. The generation of Probability Distribution Functions (PDFs) for returning 

photons which depend on laser pulsewidth, pulse spreading by the satellite 

array, detector response, and event timer jitter (Degnan, Canberra 2018).

2. Rapid and accurate determination of the PDF Centroid in generating mm 

accuracy normal points (Degnan, Riga 2017 and Canberra 2018).

3. Spaceborne retroreflector array designs  that provide narrow and highly 

uniform responses independent of the laser “attack angle” in both elevation 

and azimuth while simultaneously providing a total optical cross-section 

appropriate for the operational altitude (Degnan, Potsdam, 2016)



Current Sources of Range Bias

• Optical and electronic delays within the SLR system are usually calibrated by ranging to a 

single retroreflector placed a known distance from the telescope “invariant point”, defined as 

the intersection of the telescope elevation and azimuth axes. The PDF of the start 

channel/instrument is well-mapped by ranging to a single cube calibration target which has a 

delta-function impulse response.

• Pulse time-of-flight measurements in both legacy multiphoton and newer kHz single photon 

systems currently rely on threshold detection of the start and stop pulses, where changes in 

signal amplitude  can result in range bias.

• In legacy multiphoton systems,  amplitude variations in the start channel are generally quite 

small and large variations in the stop channel have been  greatly reduced through the use of 

Constant Fraction Discriminators (CFDs). 

• True single photon sensitive kHz systems are subject to “first photon range bias” as the 

received signal strength increases. As a result, they are often operated  with return rates of 

10% or less to greatly favor single photon returns. The result is a “bias free” range 

measurement but the  larger variance  Probability Distribution Function (PDF) requires 

longer time intervals to achieve a 1 mm Normal Point (NP) This further reduces the number 

of satellites tracked and extends the length of the satellite arc that the NP represents.

• Nevertheless, in both types of system, the PDFs for photon events in the start and stop 

channels are different since the satellite signature affects only the PDF of the  stop channel. 

Thus,  a range bias in the normal point can result unless the start and stop times are 

determined by the centroids of the distributions rather than a simple threshold crossing.



Central Limit Theorem (CLT)

If two or more photons are sampled per pulse, the CLT tells us that, on average, the 

mean of n samples is equal to the mean of the parent distribution, tc. Thus, no bias 

is introduced by the multiphoton measurement. As the mean number of photons per 

pulse increases (n>15), the PDF distribution becomes highly Gaussian in shape, i.e. 

a “normal” distribution. For an arbitrary distribution of single photon events, one can 

prove the following for the mean and variance of the n-photon distribution:
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Therefore the n-photon mean is unbiased

n-photon variance
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So the n-photon mean 

has a variance n times 

smaller than the single 

photon distribution



Suitable Centroid Detectors

• The detector must be sensitive to single photons and have the ability to record 

multiple single photon events per pulse on a single anode. 

• MCP/PMTs have thousands of microchannels and SiPMTs have hundreds to 

thousands of individual APDS, separated spatially by a few microns, which are 

capable of recording multiple single photon events and combining the outputs 

onto a single anode. 

• The finite size of the satellite image in the telescope focal plane ensures that 

multiple microchannels or SiAPDs are illuminated and can be further blurred if 

required.

• If the photons coming back from the satellite are grouped too closely together 

in time to permit the measurement of individual photon arrival times, the 

individual photons will create an irregular and  complex single pulse of varying 

amplitude out of the anode whose centroid must be determined. 

• Fortunately, microwave radar engineers have developed simple circuits to 

measure the centroid of an irregularly shaped pulse.



Centroid Detector for Radar

US Patent #3,906,377 (Sept. 16, 1975)



Field Calibration

The measured TOF to the calibration target is given by

where t1 and t0 are the centroids of the stop and start pulses respectively and (t1 –t0) 

is the actual pulse TOF. The constant (C1-C0) is determined by ranging to a single 

cube corner at a known distance Rcal via the equation

)()( 0101 ttCCTOF −+−=

( ) cRTOFCC cal /201 −=−

and subtracted from all satellite TOF measurements to obtain a bias free range.



Spherical Satellite Impulse Response*

For a spherical geodetic satellite, the mean impulse response can be described by*
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where σcc is the optical cross-section of a single cube corner, N is the number 

of cube corners uniformly distributed over the spherical surface, ncc is the 

refractive index of the cube corner, ε =nccLcc/Rs is the ratio of the optical 

length (face to vertex) of an individual cube (nccL) to the satellite radius Rs , τ

= ct/2Rs is a normalized time expressed in units of the roundtrip transit time of 

the laser pulse from the surface of the satellite to the satellite center of mass 

and back, θmax is the maximum acceptance angle of the retroreflector from 

normal incidence.  The quantity θ(τ,ε, ncc) is obtained by solving the equation 

* See J. Degnan, “Millimeter Accuracy Satellite Laser Ranging: A Review”, Contributions  of  Space  Geodesy  to

Geodynamics:  Technology,  D.  E.  Smith  and  D.  L.  Turcotte  (Eds.),  AGU  Geodynamics  Series,  Volume  25,  pp.  

133-162
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as a function of τ. The target PDF T(t), used in computing of λ (t), is I(τ,ε,ncc) 

whose integral is normalized to 1.
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LAGEOS Impulse Response

The graphs below present the mean impulse response for LAGEOS, i.e. the 

target PDF T(t) used in the generation of λ(t), expressed as a function of τ = 

ct/2Rs on the left and distance of the return from the satellite Center of Mass 

(CoM) on the right. The centroid of the PDF is indicated by the blue dots, i.e. τc

= 0.16 corresponding to a satellite radius from CoM of ~250.1 mm in good 

agreement with LAGEOS lab measurements. The total width (zero to zero) of 

the LAGEOS impulse response is about 70 mm or 468 psec.
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Quasi-Centroid Detection

Unfortunately, to the author’s knowledge, a suitable centroid detection circuit has not yet been 

developed in the subnanosecond pulse optical regime. However, In some of our airborne single 

photon lidars and most recently in lab tests of SGSLR (see the presentation by Hoffman et al 

and the poster by Clarke et al), we have improved the range accuracy and stability  by recording 

the times at which the electronic pulse from a single photon event crosses a fixed threshold in 

both the upward and downward direction. For a broad temporally symmetric pulse, the average 

would provide the temporal peak (centroid) of the pulse while, for an asymmetric pulse, it would 

give an imperfect estimate of the pulse centroid (as demonstrated below for the LAGEOS PDF) 

and the bias magnitude would depend on the choice of threshold. On the other hand, if the 

instrument PDF was sufficiently narrow to accurately record the arrival times of individual 

photons, the bias would be largely eliminated
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Probability Distribution Function (PDF)

The PDF for the photon time of arrival at the receiver is obtained by convolving  

the PDFs of the laser (L), the target (T),  and the receiver (R), i.e. 

( ) * *t L T R =

Thus, the photoelectrons arriving at the receiver have a PDF  given by
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which, for a single retro calibration target having a delta function response, 

reduces to
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where τc is the roundtrip flight time to the target. The instrument PDF due to 

the laser and receiver, λc(t), can be measured at the output of the detector 

with a high speed oscilloscope or, for ultrashort pulses, a sampling scope, 

but we will now provide an experimental alternative for determining λc(t). 11



Detection as a Two State Markov Process
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For  a single photon detection threshold (T = 1) as in kHz SLR systems,

( )( ,1, )a n t n t=

Threshold detection can be treated as a Two State Markov Process  with the initial 

state being “no detection” and the final state being “detection” (if n>0). The time of 

detection PDF depends on the detection threshold, T, the number of 

photoelectrons detected, n, and the n-photon temporal PDF distribution λ(t) given 

by 
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where λ(t) has a non-zero value only in the time interval t0 < t < tf and the 

integral of λ (t) over that interval is equal to 1.
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Note: once λ(t) = μ1(t) is known, the functional form of μn(t) is determined 

for all values of n. 



Determining λ(t) Experimentally

The function λ(t) can be derived from range data to the calibration target (or even a satellite) 

by utilizing a low return rate (<10%) such that one is always seeing single photon returns. In 

this instance, the PDF of the measured ranges should obey the functional form 
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 where  t0 < t < tf

and t0 and tf are defined as the end points of the n=1 detection PDF where λ(t)=0.  The 

following  graph shows the unsmoothed single photon PDF, P1(t),  for NASA’s prototype 

NGSLR station ranging to the calibration target.
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The profile P1(t) can be smoothed (for 

example)  by: (1) computing the Fourier 

Transform, (2) applying a bandpass filter 

to eliminate high frequency noise,  and 

then (3) computing the inverse Fourier 

transform to provide the function μ1(t) in 

tabulated or functional form. This can 

then  be used to compute λ(t) and the n-

photon PDFs, Pn(t), for a small range of n

values and correct for signal strength 

biases in all future measurements to 

the same target!



Detection Probability and Normal Point Precision

For a SLR system with a single photon detection threshold, the probability of 

detecting  the satellite signal is

( )nnPd −−= exp1)(

and the number of range measurements contributing to a satellite “normal point” is

where

fL= the laser repetition rate = 2 kHz for SGSLR

np = the normal point time interval

and the desired normal point precision  is equal to
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where 1 is the satellite-dependent , single pulse, single photon range precision 

obtained from the contributions of the laser (L), detector (D), Event Timer (ET), and 

Satellite (S). Thus, the integration time required to generate a normal point with 

precision σnp is given by
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NGSLR LAGEOS 1mm NP Integration Time vs n

mmETDLinst 5.37222 =++= 

σL= 6.3mm for 50 psec FWHM Laser

σD = 36.8 mm for MCP/PMT

σET = 3.4 mm for baseline Sigma ET

σinst = instrument RMS ~ 37.5mm

fL = laser repetition rate = 2 kHz 

225 mm = 6 σinst

Instrument PDF

C. Clarke et al, ILRS Workshop, 2013

LAGEOS 

Contribution

σS = 11.5 mm  

mmSinst 2.3922
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Photoelectron Distribution vs Return Rate
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From Poisson statistics, the probability that a given return within the NP consists of n

photoelectrons when the mean number is η is given by  
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Computing λ(t) from μ1(t)
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We begin by computing μ1(t) from the observed single photon PDF P1(t)
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Integrating both sides of the equation with respect to t yields

Computing the logarithm of both sides gives
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and differentiating both sides with respect to t yields our final result
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Detection Centroid for Arbitrary Return Rate 

For a normal point generated with multiple values of n and having a mean signal 

strength η, the bias in the photon time of flight is
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where the centroid of the PDF for n detected photoelectrons is given by 

which,  in the limit as n goes to zero, reduces to the unbiased photon arrival time  
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NGSLR to Calibration Target
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Time and Range Bias vs Number 

of Detected Photoelectrons (n =0 to 10) Range Bias in mm 

vs Return Rate per 

Normal Point

Max. Bias = 

-26.67 mm

λ(t) = photon arrival PDF

P1(t) = photon detection PDF
n=6

n=1

Pn(t), n = 1 to 6



NGSLR Calibration Test 

Theory vs Experiment
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NGSLR to LAGEOS

21

Time and Range Bias vs Number 

of Detected Photoelectrons (n =0 to 10)

n=6

Pn(t), n = 1 to 6

P1(t) = photon detection PDF

λ(t) = photon arrival PDF

Max. Bias = 

-28.5 mm



MM ACCURACY GEODETIC SATELLITES

Technical Challenges and Solutions

Challenge: Geodetic satellites (e.g., LAGEOS, Starlette, etc.) are typically in low to 

medium altitude orbits, and rotate freely in space. 

Solution: Spherical satellites permit  a quasi-uniform response independent of the laser 

attack angle.

Challenge: The satellite must present a high enough cross-section, consistent with its 

maximum range,  to support ranging  by the entire ILRS network.

Solution: Since velocity aberration limits the size of the individual retroreflectors at lower 

altitudes, cross-section must be achieved by increasing the number of retroreflectors 

contributing to the station return. This can be achieved by building larger spheres, which 

present more surface area able to accommodate a larger number of reflectors, and/or 

Improving the packing density to increase the number of retros per unit surface area.

Challenge: Reduce the spread in the satellite impulse response to improve range 

accuracy and precision.

Solution: Since the strength of an individual retro return diminishes as one gets farther 

from normal incidence, we can reduce pulse spreading  in larger spheres by restricting  

returns over a smaller range of incidence angles through the use of hollow or recessed 

solid retros.

J. Degnan 22



Satellite Cross-Section
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For a spherical satellite, the nominal array cross-section is given by [Degnan, 1993]

where θmax is the maximum acceptance angle of the 

cube corner, σcc is the optical cross-section of a 

single cube corner at normal incidence, N is the 

total number of retroreflectors on the spherical 

satellite, Acc is the surface area occupied by a cube 

corner, Rs is the satellite radius, and β is the retro 

“packing density”. The maximum acceptance angle  

θmax can be expressed as a function of the time 

spread Δt and the satellite radius, i.e. 
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β =0.435

(LAGEOS)

β =1

From the bottom graph, a 70 cm radius Super-LAGEOS 

with the same cross-section and a 100 psec total spread 

is feasible. Retros would be recessed such that  θmax = 

11.9o, and the satellite would be heavier to counteract the 

increased drag.
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GNSS and Geostationary Satellites

24

Challenges: GNSS and Geosynchronous Satellites have the following characteristics:

1. Their orbital altitudes correspond to several Earth radii

2. They generally perform a utilitarian function  (Earth observation, 

communications, navigation,  etc. ) which keeps the nadir side of the satellite 

approximately facing  the Earth CoM.

3. The velocity aberration  is typically in the range 20 to 25 rad and the 

variation is very small.

4. For a maximum zenith tracking angle of 70o, beam Incidence angles can vary 

from 0 to  θlim where
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lim
hR
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a

E

E =13.1 deg for GNSS satellites at 20,000 km

= 8.2 deg for GEO  satellites at 36,000 km

The smaller range of incidence angles implies limited pulse spreading from a flat array, 

especially if the array is compact in size  and the retros are densely packed together to 

achieve the necessary cross-section.  Nevertheless, the  maximum flat panel induced 

spreading due to zenith tracking angle is  still 474 psec (7 cm) and 292 psec (4.4 cm) per 

linear foot of array for GNSS and GEO satellites respectively. This spreading can increase  

further if satellite attitude deviations from true nadir extend the range of incidence angles. 

Furthermore, the impulse response varies with satellite elevation and azimuthal angle. 

Solution: Flat panels can be replaced by a segment of a large sphere that simultaneously 

provides roughly the same  desired cross-section (108 m2) and the same amount of pulse 

spreading from all view angles. 



GNSS Array Characteristics 

If we replaced the current flat panels on GNSS satellites with a segment of a sphere with 

radius Rs, the minimum radius of the array footprint on the nadir-viewing side of the satellite 

would be given by 

)tan( limmax  += SA RR

where we have assumed standard 38 mm diameter retros, a fill factor  β ~0.8, θlim = 

13.1o for GNSS satellites and used the following equation 
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and assumed the ILRS recommended GNSS  cross-section of 108 m2 to generate the 

following graphs
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GNSS Retroreflector  Size

The results on the last slide assumed a standard 38 mm diameter 

retroreflector and resulted in a rather large footprint (1 to 2 m) on the nadir-

viewing face of the spacecraft. However, because the range of velocity 

aberration is rather narrow for GNSS and higher satellites, one has the option 

of using a larger retroreflector. Since the optical cross-section increases as D4 

power but the occupied area increases only as D2, one can envision a smaller 

sphere with fewer retros embedded into it and therefore a smaller footprint. A 

cursory analysis suggests that retro diameters up to 64 mm can be used, 

yielding the following results for a fill factor of β =0.8.
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Summary
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• We have proposed both a theoretical and an experimental method for correcting the range 

bias in a normal point for an arbitrary return rate. 

• This method not only provides a potentially bias-free range measurement but also  removes 

the restriction to use only low return rates thereby greatly 

• Reducing the integration time for normal point generation  and reducing the length of the orbital 

path which defines that normal point.

• Enhancing satellite data volumetric output in kHz SLR systems

• Speeding up the interleaving of satellites.

• The theoretical method determines the function λ(t) by convolving the “known” PDFs for the laser, 

target, and receiver and then uses the result to compute the various PDFs associated with higher 

values of n and their corresponding time or range centroids, tn.

• The experimental method uses low return rate measurements(<10%) to a particular target 

(calibration or satellite) to determine the single pe PDF P1(t) for that target and again uses that result 

to compute the PDFs and centroids for higher values of n. High frequency noise in the experimental 

data can be removed by a smoothing method, e.g. computing the Fourier transform, applying a 

bandwidth filter, and performing an inverse Fourier Transform.

• The PDF approach assumes that the target response is largely independent of viewing angle, 

as with uniformly populated spherical geodetic satellites  (LAGEOS, Starlette, etc.) or remote 

sensing or GNSS satellites where legacy flat panel arrays are replaced by segments of uniformly 

populated spheres.

• Our results to date using NGSLR data suggest that the range bias is expected to vary linearly from 0 

at very low return rates to a maximum on the order of -27 mm at very high return rates near 100%. 

Thus, two bias measurements at a very low and very high rate can define the bias at all rates. 
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